- CANDELORO DE SANCTIS, S., GIGLIO, E., PAVEL, N. V. & QUAGLIATA, C. (1972). Acta Cryst. B28, 3656-3661.
- CANDELORO DE SANCTIS, S., GIGLIO, E., PETRI, F. & QUAGLIATA, C. (1979). Acta Cryst. B35, 226-228.
- CERRINI, S. & PELLICCIONI, A. (1990). Acta Cryst. A46, C35-C36.
- COIRO, V. M., D'ANDREA, A. & GIGLIO, E. (1979). Acta Cryst. B35, 2941-2944.
- DUAX, W. L. & NORTON, D. A. (1975). Atlas of Steroid Structures. New York: Plenum.
- GIGLIO, E. (1984). Inclusion Compounds, Vol. 2, edited by J. L. ATWOOD, J. E. D. DAVIES & D. D. MACNICOL, ch. 7, pp. 207-229. London: Academic Press.
- GIGLIO, E. & QUAGLIATA, C. (1975). Acta Cryst. B31, 743-746.

- GUARINO, A. (1984). Inclusion Compounds, Vol. 3, edited by J. L. ATWOOD, J. E. D. DAVIES & D. D. MACNICOL, ch. 5, pp. 147-171. London: Academic Press.
- GUARINO, A. (1986). J. Photochem. 35, 1-11.
- GUARINO, A. (1987). J. Mol. Graph. 5, 22-24.
- GUARINO, A., POSSAGNO, E. & BASSANELLI, R. (1987a). J. Incl. Phenom. 5, 563-566.
- GUARINO, A., POSSAGNO, E. & BASSANELLI, R. (1987b). Tetrahedron, 43, 1541-1549.
- GUARINO, A., POSSAGNO, E. & BASSANELLI, R. (1988). Bull. Soc. Chim. Fr. 2, 253-257.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.

Acta Cryst. (1993). C49, 1092–1094

Mesoionic Compounds. 4.* Structure of 1,4,5-Triphenyl-1,2,4-triazolium-3-thiolate

BY KUNG-KAI CHEUNG[†]

Department of Chemistry, University of Hong Kong, Bonham Road, Hong Kong

AUREA ECHEVARRIA

Universidade Federal Rural do Rio de Janeiro, Departamento de Quimica, 23.851 Itaguai, RJ, Brazil

SÉRGIO GALEMBECK

Universidade de Sao Paulo, FFCL-RP, Departamento de Quimica, 14.049 Ribeirao Preto, SP, Brazil

M. APARECIDA M. MACIEL

Universidade Federal Rural do Rio de Janeiro, Departamento de Quimica, 23.851 Itaguai, RJ, Brazil

JOSEPH MILLER

Universidade Federal da Paraíba, LTF, Campus Universitário I, Cx. Postal 5009, 58.059, João Pessoa, PB, Brazil

VICTOR M. RUMJANEK

Universidade Federal Rural do Rio de Janeiro, Departamento de Ouimica, 23.851 Itaguai, RJ, Brazil

AND ALFREDO M. SIMAS

Universidade Federal de Pernambuco, Departamento de Quimica Fundamental, 50.739 Recife, PE, Brazil

(Received 27 July 1992; accepted 1 December 1992)

Abstract. $C_{20}H_{15}N_{3}S$, $M_{r} = 329.43$, monoclinic, $P2_1/c$, a = 11.745 (4), b = 7.600 (4), c = 21.929 (6) Å, $\beta = 118.36 (4)^{\circ}, V = 1722.4 (1.0) \text{ Å}^3, Z = 4, D_x =$ 1.270 g cm⁻³, λ (Mo K α) = 0.7107 Å, μ = 1.8 cm⁻¹, F(000) = 688, T = 297 K, R = 0.038 for 1372 reflec-

* Part 3: Cheung, Echevarria, Galembeck, Maciel, Miller, Rumjanek & Simas (1992).

0108-2701/93/061092-03\$06.00

tions. The mesoionic compound has a nearly planar pentatomic heterocyclic ring and an exocyclic C-S⁻ bond.

compound (B) Introduction. The title is a rearrangement product of 4,5-diphenyl-1,3,4thiadiazolium-2-phenylaminide (A), in which the S atom of (A) becomes the exocyclic S atom of (B). Alternatively, (B) may be obtained directly from

© 1993 International Union of Crystallography

[†] Author to whom correspondence should be addressed.

open-chain precursors (Maciel, Echevarria, Rumjanek, Montanari & Miller, 1992). Both are mesoionic compounds for which we now give a new definition. Mesoionic compounds are poly-heteroatom five-membered ring betaines, stabilized by electron delocalization and with dipole moments not less than 5 D (1 D = 3.33564×10^{-30} C m), in which electrons and a positive charge are delocalized over a part of the ring and attached groups, and in which electrons and a negative charge, formally on an α -atom (normally a heteroatom), are delocalized over the remaining part of the ring.

Experimental. Recrystallization from chloroform vielded pale yellow prism-like crystals. Crystal 0.15 $\times 0.15 \times 0.07$ mm. Enraf-Nonius CAD-4 diffractometer, with graphite monochromated Mo Ka radiation and scintillation counter. Cell parameters by least squares from setting angles of 25 reflections $(9.8 < 2\theta < 13.8^{\circ})$ measured on the diffractometer. The intensities of 4591 reflections $(2\theta_{max} = 44^{\circ})$ in the range $-12 \le h \le 12, \ 0 \le k \le 8, \ -20 \le l \le 20$, were measured using $\omega - 2\theta$ scans, with ω -scan angle (1.00) $+0.344\tan\theta$)° and at 0.97 to 5.49° min⁻¹, extended 25% on each side for background measurement. Three standard reflections measured every 2 h showed no decay. Systematic absences indicated space group $P2_1/c$ which was confirmed by the structure solution. The intensity data were corrected for Lorentz and polarization effects, but no absorption correction was applied. Averaging of equivalent reflections gave 2299 reflections; $R_{int} = 0.025$ for observed reflections $[I > 3\sigma(I)]$ and 0.040 for all reflections. The structure was solved by direct methods (MULTAN11/82; Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1982) and refined by full-matrix least squares using the SDP program package (Enraf-Nonius, 1985) on a Micro-VAX II computer with atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV). H atoms in calculated positions were not refined. Convergence for 217 parameters by least squares with $w = 4F_o^2/\sigma^2(F_o^2)$, where $\sigma^2(F_o^2) = [\sigma^2(I) + (0.045F_o^2)^2]$, for $F_o^2 > \sigma^2(F_o^2)$, and w = -2.0 for all other reflections, was reached at R = 0.039, wR =0.041 and S = 1.024 for 1372 reflections with $|F_o| >$ $2\sigma(|F_o|)$. $(\Delta/\sigma)_{\rm max} = 0.01$. A final difference Fourier map was featureless, with maximum positive and negative peaks of 0.13 and $-0.14 \text{ e} \text{ Å}^{-3}$, respectively.

Discussion. An ORTEPII drawing (Johnson, 1976) of the molecule with the atomic numbering scheme is shown in Fig. 1. The atomic parameters of C, N, O and S atoms are listed in Table 1.* Bond lengths, bond angles and selected torsion angles are given in Table 2. The pentatomic heterocyclic ring is nearly planar ($\chi^2 = 11$). The C(2)—S⁻ bond length of 1.681 (2) Å is intermediate between the double-bond length of 1.645 Å (Bocelli & Rizzoli, 1989) and the single-bond length of 1.737 Å in 5-benzoylthio-1.2.3.4-thiatriazole (Perman & Gleason, 1991). The bond lengths C(2)—N(3) 1.328 (3), C(5)—N(1) 1.346 (2) and C(5)—N(4) 1.323 (4) Å suggest that these bonds have some double-bond character as they are comparable to the C-N bond length of 1.347 Å in 4.5.6.7-tetrahydro-1.3-benzimidazole-2thione, which also has a C-S bond length of 1.690 Å (Kitano, Ishitani, Sato, Imamura & Ashida, 1991), and the C-N bond length of 1.352 Å in 5.5-dimethyl-4-(2-methylallyl)-2-tolyl-1,2,4-triazolidine-3-thione, with C-S bond length of 1.677 Å (Schulze, Richter & Faure, 1988). The C(2)—N(1)

* Lists of structure factors, anisotropic thermal parameters, H-atom parameters and geometry, torsion angles and r.m.s. amplitudes of thermal vibration have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55820 (25 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HU1022]

Fig. 1. ORTEPII drawing of the title molecule with the atomic numbering scheme.

Table 1. Atomic coordinates and equivalent isotropic thermal parameters $(Å^2)$ with e.s.d.'s in parentheses

$B_{eq} = (8\pi$	$(2/3)\sum_i\sum_iU_{ii}d_{ii$	$a_i^*a_i^*\mathbf{a}_i.\mathbf{a}_i$
------------------	--	---------------------------------------

	x	у	Ζ	Beg
S	0.10872 (8)	0.2262 (1)	0.09123 (4)	5.86 (2)
N(1)	0.0178 (2)	0.2547 (3)	-0.04969 (9)	3.94 (5)
N(3)	-0.1300 (2)	0.2801 (3)	-0.01463 (9)	4.56 (6)
N(4)	-0.1840 (2)	0.2927 (3)	-0.0857(1)	4.16 (6)
C(2)	-0.0043 (2)	0.2550 (4)	0.0083 (1)	4.17 (7)
C(5)	-0.0965 (2)	0.2768 (4)	-0.1071 (1)	3.97 (7)
C(6)	0.1425 (2)	0.2517 (4)	-0.0472 (1)	3.96 (7)
C(7)	0.1850 (2)	0.4007 (4)	-0.0657(1)	4.62 (8)
C(8)	0.3058 (2)	0.3998 (5)	-0.0624 (1)	5.65 (9)
C(9)	0.3822 (3)	0.2531 (5)	-0.0406 (2)	6.6 (1)
C(10)	0.3374 (3)	0.1057 (5)	-0.0218(2)	7.9 (1)
C(11)	0.2171 (3)	0.1040 (5)	-0.0249 (2)	6.11 (9)
C(12)	-0.3226 (2)	0.3094 (4)	-0.1267 (1)	4.89 (8)
C(13)	-0.3805 (2)	0.4591 (5)	-0.1215(1)	5.55 (9)
C(14)	-0.5145 (3)	0.4736 (5)	-0.1606(2)	7.0 (1)
C(15)	-0.5843 (3)	0.3352 (6)	-0.2023(2)	8.1 (1)
C(16)	-0.5222 (3)	0.1869 (7)	-0.2056 (2)	10.3 (1)
C(17)	-0.3904 (3)	0.1708 (6)	-0.1667 (2)	7.7 (1)
C(18)	-0.1193 (2)	0.2797 (4)	-0.1788 (1)	3.98 (7)
C(19)	-0.1817 (3)	0.4199 (5)	-0.2215(1)	5.10 (8)
C(20)	-0.2028 (3)	0.4208 (5)	-0.2896 (1)	5.95 (9)
C(21)	-0.1613 (3)	0.2808 (5)	-0.3139 (1)	5.75 (9)
C(22)	-0.1002 (3)	0.1408 (5)	-0.2717 (1)	6.13 (9)
C(23)	-0.0787 (3)	0.1387 (5)	-0.2035 (1)	5.32 (8)

Table 2. Bond lengths (Å), bond angles (°) and selected torsion angles (°) with e.s.d.'s in parentheses

S-C(2)	1.681 (2)	C(14)-C(15)	1.379 (5)
N(1)-C(2)	1.413 (4)	C(15)-C(16)	1.364 (6)
N(1)-C(5)	1.346 (2)	C(16)-C(17)	1.373 (5)
N(1)-C(6)	1.439 (3)	C(18)-C(19)	1.377 (4)
N(3)—N(4)	1.379 (3)	C(18) - C(23)	1.384 (5)
N(3) - C(2)	1.328 (3)	C(19) - C(20)	1.392 (4)
N(4)-C(5)	1.323 (4)	C(20) - C(21)	1.379 (5)
N(4) - C(12)	1.443 (3)	C(21) - C(22)	1.369 (4)
C(5)-C(18)	1.465 (4)	C(22)-C(23)	1.392 (4)
C(6) - C(7)	1.374 (4)	C(10) - C(11)	1.382 (5)
C(6) - C(11)	1.365 (4)	C(12) - C(13)	1.357 (5)
C(7) - C(8)	1.386 (4)	C(12) - C(17)	1.360 (5)
C(8) - C(9)	1.367 (5)	C(13)-C(14)	1.393 (4)
C(9)—C(10)	1.381 (6)		- ()
C(2) N(1) $C(5)$	108 2 (2)	C(0) C(10) C(11) 121 2 (2)
C(2) = N(1) = C(3)	106.2 (2)	C(9) - C(10)	11) 121.2(3) 10) 1195(3)
C(5) = N(1) = C(6)	125.6 (2)	N(4) = C(11) = C(12)	12) $110.5(3)$
N(4) = N(3) = C(3)	125.0(2)	N(4) = C(12) = C(12)	13) $110.9(2)17)$ $119.3(2)$
N(3) = N(4) = C(2)	105.0(2)	C(13) $C(12)$ $C(13)$	(17) 110.5 (5)
N(3) = N(4) = C(12)	112.1(2)	C(13) - C(12) - C(12	(17) 122.0 (2) (14) 119.6 (2)
$\Gamma(5) = \Gamma(4) = C(12)$ $\Gamma(5) = N(4) = C(12)$	171.2 (1)	C(12) - C(13) - C(14) - C(14	(14) 110.0 (5) (15) 110.2 (2)
S = C(2) = N(1)	125.8 (2)	C(13) - C(14) - C(14	(15) 119.5 $(5)(16)$ 120.1 (2)
S = C(2) = N(1) S = C(2) = N(3)	125.0(2)	C(14) - C(15) - C(15	(10) 120.1 (3)
N(1) = C(2) = N(3)	120.4(2)		(17) 121.0 (4) (16) 119.7 (4)
N(1) = C(2) = N(3) N(1) = C(5) = N(4)	107.9(2) 106.2(2)	C(12) - C(11) - C(12) - C(12	(10) 110.2 (4) (0) 120.6 (2)
N(1) = C(5) = P(4)	100.2 (2)	C(5) - C(10) - C(10)	120.0(3)
N(4) = C(5) = C(18)	120.0(3)	C(10) - C(10) - C(10)	(3) 119.2 (2) (32) 120.2 (2)
N(1) = C(5) = C(10)	127.1(2)	C(19) - C(10) - C(10	(23) 120.3 (3)
N(1) = C(0) = C(1)	110.5(2)	C(10) - C(19) - C(19	(20) 119.9 (4) (21) 110.7 (2)
C(7) = C(6) = C(11)	121 5 (3)	C(19) - C(20) - C(21) - C(21	(21) 119.7 (3)
C(6) - C(7) - C(8)	119.2 (3)	C(20) - C(21) - C(21	(22) 120.4 (3)
C(7) - C(8) - C(0)	120.6 (3)	C(18) - C(22) - C(22	(23) 120.3 (3)
C(8) - C(9) - C(10)	119.2 (3)	C(18)-C(23)-C	(22) 119.4 (3)
C(2) = N(1) = C(0) = C(7)	-108.9(3)	C(5) = N(4) = C(12) = C(5) = N(4) = C(12)	-C(13) = -116.8(3)
C(5) = N(1) = C(0) = C(1)	$(1) 69.3(4) \\ (3) 63.4(4)$	N(1) - C(5) - C(12) - N(1) - C(5) - C(18) -	-C(17) = 05.9(4) -C(19) = 125.5(3)
C(5) - N(1) - C(6) - C(1)	(1) - 118.4(3)	N(1) - C(5) - C(18) - C(18)	-C(23) 55.3 (4)
N(3)-N(4)-C(12)-C	(13) 67.6 (4)	N(4)-C(5)-C(18)-	-C(19) 55.6 (4)
N(3)-N(4)-C(12)-C	(17) - 109.7 (3)	N(4)-C(5)-C(18)-	-C(23) - 123.6 (3)

bond length of 1.413 (4) Å is significantly longer but still less than the mean single-bond value of 1.478 Å for the above triazole compound.

The N(3)—N(4) length of 1.379 (3) Å is slightly shorter than the single-bond value of 1.401 Å (Allen, Kennard, Watson, Brammer, Orpen & Taylor, 1987), and the value of 1.393 (4) Å in the hydrochloride of 5-(4-methoxyphenyl)-4-phenyl-1,3,4-thiadiazolium-2phenylaminide (Cheung, Echevarria, Galembeck, Maciel, Miller, Rumjanek & Simas, 1992). The fact that the C(2)—N(1) and N(3)—N(4) bond lengths are closer to the single-bond length supports the view, implicit in our definition of mesoionic compounds, that the conjugation in the pentatomic ring is not uniform, but is separated into two conjugated systems, one involving the atoms N(1), C(5) and N(4), and the other involving N(3), C(2) and S^- . This conjugation is likely to weaken the exocyclic bonds to the phenyl C atoms. Thus, the N(1)-C(6) length of 1.439 (3) Å and the N(4)—C(12) bond of 1.443 (3) Å are significantly longer than the value of 1.417 Å in the above triazole compound, and the C(5)—C(18) value of 1.465 (4) Å is comparable to other inter-ring $C(sp^2)$ — $C(sp^2)$ bonds. The dihedral angles formed by the least-squares planes of the triazole ring and the three phenyl rings are $66.6(1)^{\circ}$ for the ring C(6) – C(11), 112.8 (1)° for C(12) – C(17) and 55.5 (3)° for C(18) – C(23). N(3) is 2.40 Å from the H atom bonded to C(11) at -x, -y, -z, and 2.67 Å from the H atom bonded to C(7) at -x, 1 – y, -z; there is no other non-H to H atom intermolecular distance less than 2.91 Å. The shortest intermolecular distance involving non-H atoms is 3.24 Å for N(3) to C(7) at -x, 1-y, -z.

References

- ALLEN, F. H., KENNARD, O., WATSON, D. G., BRAMMER, L., ORPEN, G. & TAYLOR, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.
- BOCELLI, G. & RIZZOLI, C. (1989). Acta Cryst. C45, 119-121.
- CHEUNG, K. K., ECHEVARRIA, A., GALEMBECK, S., MACIEL, M. A. M., MILLER, J., RUMJANEK, V. M. & SIMAS, A. M. (1992). Acta Cryst. C48, 1471–1474.
- Enraf-Nonius (1985). Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
- JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- KITANO, Y., ISHITANI, A., SATO, H., IMAMURA, S. & ASHIDA, T. (1991). Acta Cryst. C47, 1269–1271.
- MACIEL, M. A. M., ECHEVARRIA, A., RUMJANEK, V. M., MONTA-NARI, C. A. & MILLER, J. (1992). In preparation.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- PERMAN, C. A. & GLEASON, W. B. (1991). Acta Cryst. C47, 1018-1021.
- SCHULZE, K., RICHTER, C. & FAURE, R. (1988). Acta Cryst. C44, 1994-1996.